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Abstract. The governing equations are formulated and some exact solutions are obtained for plane deformation of
membranes formed of two families of elastic cords. The cords are assumed to be continuously distributed and every
cord of one family is joined to each cord of the other family at their point of intersection. The membranes are
incapable of withstanding in-plane compression but they exhibit shear resistance and a general nonlinear stretch-
tension relation. The solutions include deformations with constant tensions (or stretches), deformations with straight
cords and a half-universal state of tensions which satisfies the governing equations for any stretch-tension relations
but a particular shear-deformation relation.

1. Introduction

The continuum theory for plane deformations of networks formed by two families of
continuously distributed inextensible cords was first formulated by Rivlin [1]. The cords are
continuously distributed so that the networks can be treated as membranes. The cords of
different families are joined together at their points of intersection so that there is no slip
between them. It was also assumed that the cords can withstand tension but cannot transmit
compression. Rivlin’s theory, which assumes no shearing resistance between the cords, was
subsequently applied by Rogers and Pipkin [2] to treat problems of inextensible networks
with holes. An extension of Rivlin’s model to include shear effects was proposed by Pipkin
[3, 4], who also discussed some of singularities that may occur in the solutions. A later paper
by Pipkin {5] deals with a modification of Rivlin’s theory so that the cords may shorten but
not lengthen and may transmit tension but not compression.

The continuum theory for networks formed by two families of straight elastic cords has
been formulated by Genensky and Rivlin [6]. They have obtained solutions to the displace-
ment boundary value problem, the traction boundary value problem and the mixed
boundary value problem under the restriction of linear elastic response and infinitesimal
strains.

When finite strains in the elastic cords are allowed, the author [7] has found some analytic
solutions to plane deformation in both discrete networks and continuous membranes. He
also discussed some degenerate deformations of continuous membranes such as slack
regions, in which the cords of one and/or both families are unstretched, and the uniqueness
of the deformation in one class of membranes. Consequently three papers have resulted (see
Green and Shi [8, 9, 10]). In addition, he obtained some numerical solutions and some extra
analytic solutions for the continuous membranes. These involve out-of-plane deformations of
the membranes with straight cords, plane deformations of the membranes with curvilinear
cords and plane deformations of the membranes with straight cords and shear resistance. It is
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the last part that forms the major part of this paper. The membrane formed in this way could
be used to model cloth.

In Section 2 we set up the equations governing the plane deformations of the membranes
with shear resistance. In Section 3 we first discuss the deformation in which a finite region of
the membrane collapses into a single curve. It is found that the collapse curve must be a
straight line if it transmits load. Then we show that the homogeneous deformation is the only
deformation in which the tensions (or the stretches) are constant. Section 4 is devoted to
inverse solutions in which the cords in one family remain straight and parallel while those in
the other are deformed into a family of congruent curves. The state of tensions in these
solutions is shown to be half-universal since the equilibrium and compatibility equations are
solved explicitly by specifying the shear-deformation relation only without stretch-tension
relations. In Section 5 we consider a particular membrane with linear relation between
tension and stretch. The deformations investigated are those in which one family of cords
remains straight and parallel while the other just remains straight. Finally, in Section 6 we
discuss some special deformations in slack regions in which one of two or both tensions
vanishes. These solutions are valid for general relations between the stress and deformation.

2. Governing equations

We consider a plane membrane formed of two families of straight parallel elastic cords with
the cords of one family being initially orthogonal to the cords of the other. When we refer to
a membrane here we have assumed that the cords are distributed so closely that it can be
treated as a continuum. The membrane is not capable of withstanding in-plane compression
but able to resist shear. Let Ox, x, be a system of plane Cartesian coordinates with axes
parallel to the initial directions of the cords and consider a plane deformation in which a
material point with initial coordinates (X, X,) relative to this system has coordinates
(x,, x,) in the deformed configuration, where

x, = x,(X;, X)), x, = x,(X;, X;) (2.1)

We refer to the family of cords X, = constant as the X-cords and the family X, = constant as
the X,-cords. The deformation gradient tensor and Green-Lagrange strain tensor (see
Spencer [11] and Ogden [12]) are

F= (x“ x“) : (2.2)

X1 %22

C= (2.3)

2 2
(C“ C12) X1t X, XX+ Xy X0,
Gy Cyp

2 2
XXX, ,%,, X1, t X5,

where x, ;= 9x,/0X, (o, B=1,2).

According to the theory of continuum mechanics, a line element along the X,-cord, or an
element of the X,-cord, at the point (X, X,) is stretched to A, = (C,)'"* = (xf,1 + x;l)”2
times its original length and rotated to the direction of the unit vector a given by

a=(x,,i+x;,§)/A,

where i and j are unit vectors along Ox, and Ox,, respectively (see Spencer [11]).



Shear-resisting membranes 381

Letting ¢ denote the angle between a and the unit vector i we then have that
X, =ACOS@, X, =ASneg. (2.4)

Similarly for a line element in the direction of the X,-cord at the point (X, X,), we have
the stretch A, =(C,,)""> = (x7, + x3,)""%, the deformed direction along the unit vector b
given by

b= (x;,i+x;,])/A,,
and
X, =Ac08 ¢, Xy, = Aysin g, (2.5)

where ¢ is the angle between b and the x,-axis.
From (2.4) and (2.5) we get the compatibility conditions for the stretches A, A, and the
directions represented by ¢ and ¢

d d
R(Al COS@D)—a—XI(AzCOS ),
2.6
i()\ sin )=—a—()\ sin ¢) a0
ax, eI e W '

Here we should note that both A, and A, are not, in general, the principal stretches of the
deformation, since they are not the eigenvalues of the Green-Lagrange strain tensor. To
avoid the membrane turning over, we assume that 0< ¢ — ¢ < 7.

Since the membrane is able to resist shear, the force carried by a cord is not necessarily in
the direction of the cord. We denote by T, the force carried by the X,-cords crossing unit
initial length of the X,-cord, with T, similarly defined for the X,-cords at the point (X, X,).
If we project the forces in the directions a and b, then we have

T,=T,a+ Sb=(T,cos¢ +Scos )i+ (T,sin¢ + Ssin ¢)j,
2.7
T,=T,b+ Sa=(T,cos ¢+ §cos )i+ (T,siny + Ssin ¢)j,

where T, and T, are tensions in the X |- and X,-cords and S is shear stress. In order to satisfy
the equilibrium of moment on an arc (see Pipkin [3]), the shear components of T, and T,
have been chosen to be the same. The sign of shear stress § is assumed to be consistent with
the convention of classical continuum mechanics.

Constitutive relations are next stated as follows. The tensions 7', and T, are related to the
stretches A, and A, by

T.(A)>0 ifA,>1
T, = (a=1,2), (2.8)
0 if A, <1
or

=Aa(T)>1 if T,>0

A, (¢=1,2). (2.9)
<1 if T, =0
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Also the shear stress § is related uniquely to shear angle /2 — (¢ — ¢) by

>0 if0s¢g-—p<m/2,

S=S*(m2-¢y+o)=S(—¢)} =0 fy—p=m/2, (2.10)
<0 ifmr=yg—ep>mu/2.

The conditions in (2.8) and (2.9) follow from the assumption that the cords cannot
withstand compression. When A; <1 and/or A, =<1, the X,-cords and/or X,-cords are not
stretched and T, =0 and/or T, =0. We refer to the region in which the cords are not
stretched as slack regions. It can be seen from (2.9) that the stretches in a slack region
cannot be determined by the corresponding tension and from (2.10) that S(¢ — ¢) is a
decreasing function of ¢ — ¢ in the range 0=y —p < 7.

It can be seen that the Piola (or nominal) stress tensor is given by

T,cosgo+Scosy T singp+ Ssiny
T,cosp + Scos¢ T,sinty+ Ssin ¢

Then the equilibrium equations are of the form

aX (T, COS(p+SCOS(,//)+ (T cosy+ Scos¢)=0,
(2.11)

(T sin ¢ + S sin ¢) + (T sin + Ssin 9)=0.

Here we have assumed that no body force exists. These equations can also be derived by
considering the equilibrium of an infinitesimal rectangular element of the membrane (see Shi
[7D)-

Here we have seven unknowns T, A,, ¢, T,, A,, ¢ and S with four equations (2.6) and
(2.11) and three relations (2.8) (or (2.9)) and (2.10). So the problem is completed by-adding
boundary conditions. Substituting (2.8) and (2.10) into (2.11), we have four equations for
four unknowns A, A,, ¢ and . Furthermore, expressing A;, A,, ¢ and ¢ in terms of x, and
x,, with aid of (2.4) and (2.5), and substituting the results into the equilibrium equations
(2.11) gives two governing equations for x, and x,. These equations should be solved when
the conditions, specially the displacement, along the boundary is specified. The compatibility
equations (2.6) are satisfied provided that x, and x, are continuous.

For a traction boundary value problem, we may employ an alternative approach. We can
obtain four equations for four unknowns 7T, T,, ¢ and ¢ by substituting (2.9) into (2.6) and
(2.10) into (2.11). We might be able to reduce the number of the equations further by
introducing the stress functions F,(X,, X,) and F,(X;, X,) such that

T,cose+ Scosy=F,,, T,cosp+Scosp=—F, |,
{Tl sing + Ssinyy =F, ,, T,sing + Ssing=—F, . (2.12)

Thus the equilibrium equations (2.11) are satisfied identically. From the equations in (2.12),
we express T, T,, and S in terms of F, F,, ¢ and ¢ as

_ Fy,siny— F,;cos ¢y
T, = sin(d — o) , (2.13a)
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F, sing—F,, cos¢

T, = : , 2.13b)
o (
F, | si — F, | cos
g _ fusmy by cosd (2.14a)
sin(y — ¢)
or
g Frasing—Fy,co89 ’ (2.14b)

sin(y — ¢)

if sin(¢ — ¢) # 0. The special situation in which sin(¢y — ¢) = 0 will be discussed in Section 3.
We know the function S(¢ — ¢). If we can solve ¢ and ¢ from (2.14) in terms of F, and F,,
then substituting into (2.13) gives 7, and T,, hence A, and A, through (2.9), in terms of F,
and F, only. For example, if

S =G cos(¢ — @) /sin(¢ — @) (2.15)
with G being constant, then a solution for (2.14) is given by

sing=—-F, /G, cose=F, /G,
(2.16)
sing=—F ,/G, cosy=F,,/G .

Finally introducing the resulting expressions into the compatibility conditions (2.6), we
obtain the governing equations for F, and F,. After solving these equations, (2.4) and (2.5)
may then be integrated to yield x, and x,.

For this problem, it is necessary to express the stretches A, and A, as functions of 7, and T,
respectively. It follows from the requirements in (2.8) and (2.9) that in slack region in which
T, =0 it is not possible to express A, as a function of 7, and that in slack region in which
T, =0 the stretch A, is not expressible as a function of T,. Thus it is by no means evident
that a solution will exist to any specified traction boundary value problem and even if a
solution exists it may well not be unique. So we may encounter difficulties when attempting a
numerical analysis of this problem. The question of existence and uniqueness of solutions is
not our main interest in this paper but rather we seek some special solutions in which the
entire region is either fully-stretched (Sections 3, 4, 5) or slack (Section 6).

The simplest fully-stretched deformation is the homogeneous one in which all the
quantities T, A, ¢, T,, A,, ¥y and § are constant throughout the membrane and equal to the
uniform values along the boundary.

We have assumed that S(7/2) =0, so the solutions obtained for the membranes without
shear resistance (e.g., see Green and Shi [8,9]) in which ¢ — ¢ = 7/2 everywhere are the
solutions for the present membrane. For example, when the relations (2.8) are of the linear
form T, =E (A, — 1), (e« =1,2), and one family of the cords is deformed into the radial
directions and the other into the circumferential directions of a circle, the equations outlined
in the present section are satisfied.

3. Degenerate deformations and deformations with constant tensions

In this section we assume that the constitutive relation (2.10) gives — < §(7r) < S(0) < oo,
i.e. the cases y = ¢ and ¢ = 7 + ¢ are allowed. First we discuss a deformation in which
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¢y =o¢or ¢ =m+ ¢ in some region. If there exists such a deformation, then the two cords
through any point (X, X,) in the region before the deformation must be parallel to each
other after deformation and the region collapses into a single curve. Following Green and
Shi [10] and choosing first the case ¥ = ¢ then the equilibrium equations (2.11) become

9 9
ﬁ [(T, + §,)cos @] + 5—1\7 [(T,+S,)cos ] =

(3.1)
[(T + §,) sin (p]+ [(T + §,) sin 9] =0
whilst the compatibility conditions (2.6) reduce to
— (A )—L Aycos ) =0
aXZ 1 cos ¢ axl ( 2 ¢ >
(3.2)

9 . F N
a—XZ()\1 sin @) oX, (A, sing)=0.

Here the shear stress S, = S(0) is constant. Expanding (3.1) and (3.2), and then rearranging
them, we have

( ! )cosqo [(T +S) +(T +S)——]sm<p 0,
X (3.3)
( >sm<p+[(T +S) +(T +S)—]cos<p 0,
s e 25
(aX cos @ — A aX )‘Zaxl singp =0,
(3.4)
I, 6A2> , ( Kl dp )
_ = + _— =
(ax2 ax, /et \higy T hgy)cose =0,
and these may be rewritten as
oT,  oT, de do
+S,) — +(T,+S,) — =0 3.
aX 2 0’ (Tl SO) aXl (T2 SO) 6X2 ’ ( 5)
ar,  dA, de ¢
— - = —— = A - =0. 3.6
aX, aX, 0. A 0X, A X, 0 (3-6)

If the collapsed region carries non-zero load then A (T, + S,) + A,(T, + §,) # 0 and (3.5b)
and (3.6b) have solution

98 _de _,
X, 94X,
or
¢ = constant = ¢, . (3.7)

Equation (3.7) shows that the region collapses into a straight line. It follows that the
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tractions applied to the boundary of the collapse region must everywhere be parallel to this
line.

In a similar procedure, we find that if in some region ¢ = 7w + ¢, then the equations
corresponding to (3.5a) and (3.6a) are

oT, oT, A, + Ay

95y 9702 _ e § =0, 3.8
X, 94X, ’ aX, daX, (3.8)
and that region also has to collapse into a straight line.

The tensions and stretches in the collapsed region can be determined from (3.5a) and
(3.6a), or from (3.8), with the aid of the response functions

T,=T,(\), T,=T,(1,), (3.9)
or their inverses
A =a(Ty), A= M(Ty) . (3.10)

These equations do not involve the shear stress and are the same as those in [10] so the
solutions found there can also be applied here. More details are referred to [10].

Now we turn to the second part of this section; assume that the tensions T, (or the
stretches A, ) (a« =1,2) are constant throughout the region occupied by the membrane and
seek for the deformation which satisfies the governing equations. In this case the compatibili-
ty conditions (2.6) reduce to

. Iy . de
A — = —
2sml//aX1 A, sin ¢ X, o
W _ 99 |
A, COS Y X, =A,COS8 @ X,
It follows from (3.11) that
. oy dp
— = — " - 4 —_ T
sin(¢ — ) =0, A, IX, *A, ox, (3.12)
or sin(p — ¢) #0 with
9 _ 99 _
ox, 0 ax 0 (3.13)

The first of (3.12) implies that the membrane collapses into a single curve and the preceding
discussion shows that the angles ¢ and ¢ are constant throughout the region. Therefore the
collapsed deformation is homogeneous.

The equations (3.13) imply that

e=e(X)), P=9(X).

The equilibrium equations (2.11) then become
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. , de o dy
(T, sin ¢ + S’ cos ¢) _Xm + (T, sin ¢y — §' cos ¢) —dX2 =0,
(3.14)
Lo de Lo du
(T, cos ¢ — 8§’ sin ¢) ax, + (T, cos  + §'sin ¢) dXz_O’

where the prime denotes the differentiation with respect to the argument y = ¢ — ¢. The
determinant of the coefficients of de¢/dX, and d¢//dX, in (3.14) is

(T, sin ¢ + 8" cos Y)(T, cos ¢ + §'sin @) — (T, cos ¢ — S’ sin Y)(T, sin ¢ — S’ cos ¢)
=(T,+ T,)S' = (T,T, + $"*)sin(¢ — ¢) . (3.15)

Since the function S(y) decreases (i.e. S'<0) and sin y >0 in the range 0< y <, the
above expression is strictly negative. Therefore it follows from (3.14) that

de dy
dx, 0, dx, 0.
which imply
¢ =constant , Yy = constant ,

throughout the region. With constant tensions and stretches, the deformation is homoge-
neous too. Therefore we can conclude that if the tensions (or the stretches) are constant
throughout the membrane then the deformation must be homogeneous.

4. Half-universal state of tensions

The deformation we consider here is that in which ¢ = 7/2 and ¢ = ¢(X)), i.e. the X,-cords
remain straight and parallel to the x,-axis and the X,-cords lie along a family of congruent
curves. For this deformation, ¢ is the shear angle so S = S§*(¢) = S(m/2 — ¢) = S(X,) and
the equations (2.6) and (2.11) become

A,
1
coscan =0, (4.1)

A, 9,

R L 42
S‘“‘Pax X, 0, (42
(T, cos ¢)=0 (4.3)

aT,
. 4.4

(Tsmcp+S)+aX =0 (4.4)

For the membrane which does not collapse, i.e. ¢ # = w/2,0r @ #  — w = —7/2, (4.1)
and (4.2) give

A= 0(X), A = 2(X,) . (4.5)
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With the aid of (2.8), (4.3) and (4.4) produce

T cose=T,,., (4.6)
T,sing+S=-KX,+A, (4.7)
T,=KX,+ B, (4.8)

where T,., K, A and B are constant.

If we give an appropriate relation S = S(7/2 — ¢), we can solve for T, and ¢ from (4.6)
and (4.7) in terms of X,. Then in turn the shear stress § can be expressed in terms of X,. For
instance, we choose Pipkin’s [3] relation, for inextensible networks, between deformation
and shear stress

S=Gtan g, (4.9

where the constant G is shear modulus. Then from (4.6) and (4.7), we have

~KX,+ A

o= TG (419
1c
_ T, 2 _ 29172
T, = T.+G (T,.+G)y +(—KX, + A)]"". (4.11)

The constants A, B, T, and K should be determined from boundary conditions. Since
they are associated directly with the state of tensions it is easy to determine them when
suitable tractions are specified along the boundary. For example, if the membrane occupies
the region 0=< X, <L, 0< X, < H and we specify the tractions such that

¢=0
at X, =0,

then
T,=TiX,/H,
T*ZXZ 172
T,= TT[l + ——z—ﬁ] ,
(T* + GYH

(4.12)
tan o = —T31X,/[(TT+ G)H],

S=-GT:X,/[(T*+ G)H].

We have completely determined the tensions 7, and T, and their directions as well as the
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shear stress without specifying the forms of stretch-tension relations. But we used (4.9), so
we call this state a half-universal state of tensions. It can be seen that both 7, >0 and T, >0
inside the region. So we can calculate A, and A, when the relations in (2.9) are given, and
then integrate (2.4) and (2.5) to find x, and x,.

5. Straight line deformation

In this section we consider membranes with stretch-tension relations

E (A, —1) if A, >1
T = (a = 13 2) > (5.1)
0 ifA, <1

and shear-deformation relation

_ o s —e)
“ ) (-2

where E,, E, and G are positive constants. These relations are chosen so that we can obtain
an analytic solution for the governing equations. The relation (5.2) states that infinite shear
stress is needed to collapse a finite region of membrane into a segment of curve, i.e. ¢ = ¢.

In the deformation considered here, we assume that ¢ = 7/2 and ¢ = ¢(X,), i.e. the
X,-cords remain straight and parallel to x,-axis and the X, cords just remain straight. Then
the relation (5.2) becomes

_ - Sin o(X;) (5.3)
c()52€¢7(Xz) .

and the equations (2.6) and (2.11) become

BLXZ (A, cos @) =0, (5.4)
ain(Alsin qo)—j—j{f]:O, (5.5)
cos¢g—2+%&(5cos¢)=0, (5.6)
sin¢z—%+5%(T2+Ssin(p)=0. (5.7)

It follows, from (5.4), that
A = f(X))/cos o(X,) , (5.8)

where f(X,) is an arbitrary function of the argument X,. The equation (5.8) is valid provided
¢ # /2, which is the requirement that the membrane does not collapse. Then (5.5) gives
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d(tan ¢)
= RO L gy, (59)

where F(X,) =] f(X,)dX, and g(X,) is another arbitrary function of its argument.
Substituting (5.8) and (5.9) into (5.1), then together with (5.3) into (5.6) and (5.7), we
have

d(tan p(X,)) _

' 5.10
Ef(X)+G ax, 0, (5.10)
d’(t d(tan’
E, f'(X,)tan ¢ + E,F(X,) ( anz“’) +G (da; ¢, E,g'(X,)=0. (5.11)
2 2
The equation (5.10) requires that
-K
fX)=—F-Xi+4, (5.12)
1
] K
tan p(X,) = = X, + B, (5.13)

where A, B and K are constant. Then integration of (5.11) gives

K’ K
g(X2)=—ﬁ,—6X§—E2BX2+C. (5.14)
2

Here C is another constant.
With the aid of cos’p(1 + tan’p) = 1, substitution (5.12), (5.13) and (5.14) into (5.8) and
(5.9) gives

A =(A-KX,/E)[1+(B+KX,/G)]'?, (5.15)
K’ (X% Xﬁ) (A B )
=——|=Z+=|+Kl=X, - —= + .
h==2E £ E k(= X, E X,|]+D, (5.16)

where D is a constant.

The constants A, B, C, D and K should be determined from the conditions along the
boundary. They are related to the angle ¢ and the stretch ratios. The latter are in turn
related to the tensions algebraically but differentially to the deformation. So it is easier to
determine them from traction boundary conditions than displacement conditions. If the
membrane occupies the region 0 < X, < L and 0< X, < H and we specify

=0 at X, =0,

p=¢* atX,=H,

at X, =X,=0,



390 Jingyu Shi

H
GX )( X3 ik
— * 1 * + -2 2 *)
A (Al E.H tan ¢* J1 1 [7g tan’e ,
X X, X3\ G G-17)
= A* 4+ 2L g * _ (__1 + _2> il 2 %
A, = A3 7 Aftan ¢ E " E)H tan“p™

K K )
S=E 1+?tan¢* Gtan ¢*.

It can be seen that if ¢*=0 then ¢ =0, A, =A7, A,=A% and S=0 everywhere.
Furthermore for 0 < ¢* < /2, A, decreases as X, increases and increases as X, does. So to
ensure that A, >1 inside the region, we must have A} =1+ (GL tan ¢*)/(E,H). Thus A,
increases as X; and decreases as X, increases. The condition for A, =1 inside the region is
A¥=1+ (G tan’¢*)/(2E,). Then the deformation functions x, and x, can be found by
integrating (2.4) and (2.5) and the tensions from (2.8). To maintain the deformation, the
traction along the boundary must be determined from the resulting expressions for the
tensions. The decreases of the stretches and tensions as X, or X, increases are caused by
the presence of the shear stress S.

6. Deformations in slack regions

Some special deformations in slack regions will be considered in this section. We first discuss
the deformations in half-slack region in which 7, >0 but T, =0, i.e. A; =< 1. We assume that
the stretched X,-cords are straight and parallel to each other, i.e. ¢ = {5, = constant. We also
assume that the region does not collapse, that is, ¢ # ¢4, or ¢, + w. Then the equilibrium
equations in (2.11) become

N 6T2> a
_
(aX1 ax,/ ©° Yo 90X, (Scos ¢)=0,

as  aT ;] (6.
— + —2> in ¢, + — (S sin @) =
<aX1 0X, sin ¢, ox, (Ssing)=0,
and the compatibility conditions (2.6) are
d _aA,
3x, (A, cos @) = 5X, cos ¥, ,
(6.2)

d . 9A, .
G—Xz (A sin @) = X, sin ¢, .

We have the relation

T,=T,(4) or A,=a(T5), (6.3)
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for the X,-cords, but not for the X,-cords. The shear stress S depends upon ¢ alone, say,
given by

S=35(¢). (6.4)

It follows from (6.1) that

%Xz [S(¢) sin(dy — @)] =0

Therefore
de
7 = O
X, ’

thatis, ¢ = ¢(X,), a function of X, alone. This implies that the X|-cords lie along a family of
congruent curves and this is a special case of those discussed in Section 4. Then, with the
relation (6.4), the equilibrium equations become

ds T, _
dX,  oX,

0. (6.5)

Furthermore, the compatibility conditions (6.2) yield

ar, A,

ax, 0 ax, !

since sin(y, — ¢) # 0. These are equivalent to
A =A(X), A = A(X) . (6.6)

With the relation (6.3), the equation (6.5) becomes
4s _ 41,
dx,  dx,-

Since the left-hand side depends on X, alone while the right-hand side on X, alone, we can
derive

ds _ d7 _
dx, 7 dx,

_K’

with K being constant. So we integrate them and find

S=KX,+ A,
(6.7)
T,=—-KX,+B,

where A and B are constant, which can be determined from the conditions specified along
the boundary.
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When the relation (6.4) is specified and if we can solve ¢ from it in terms of S, then we can
find ¢ = ¢(X,). Thus we find the state of stress. The stretch ratio A, is given by (6.4) with
the second of (6.7). Due to no more equation to be satisfied, ¢(X,) and A (X,) are arbitrary,
but A,(X,) must be less than unity. They can be determined if their values are given along a
X,-cord.

A special case occurs when the X,-cords remain straight and parallel to each other too. In
this case ¢ = ¢,, a constant different from ¢,. Then the shear stress S is constant too, which
implies that the constant K in (6.7) must be zero. Therefore the tension T, is constant in the
region.

Now we assume that in the half-slack region ¢ = ¢5,; the region collapses into a single
straight line. The shear stress S becomes constant in the region and the equilibrium
equations produce

oT,
—1=9,
X,
that is
T,=T,(X,), (6.8)

which, with the aid of (6.3), yields
A =A(X). (6.9)

The compatibility conditions become

ar,  dA,

-2 6.10

9X, dX, (6.10)
Integrating with respect to X,, we have

A =X 0(X0) + X)), (6.11)

where f(X,) is an arbitrary function of its argument. No more equation inside the region is to
be satisfied, A,(X,) is arbitrary too, which, together with f(X,), should be determined from
the displacement conditions along the boundary, provided they produce A, <1.

Finally, we discuss the deformations in a fully-slack region in which T, =0 and T, = 0 with
assumption that ¢ = i, a constant. As before, the shear stress S depends upon ¢, given by
S(¢). The equilibrium equations are reduced to

aS d
EZCOS¢°+6_,X:(SCOS‘P)_O’

(6.12)

9S d
. 4+ — i =(.
BX, sin Y, iX, (S sin @)

If sin(y, — @) # 0, the equations in (6.12) produce

do a5

ox, 0 ax, — O
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Since S = S(¢), we find that ¢ must be a constant in the region. Then the compatibility
conditions yield

A=A (X)), A, = A (X)) (6.13)

Here A,(X,) and A,(X,) are arbitrary functions which should be determined from the
displacement conditions along boundary and less than unity.

If sin(y, — ¢) =0, then directly ¢ is a constant, the equilibrium equations (6.12) are
satisfied and the compatibility conditions produce again (6.13). Thus in a fully-slack region if
one family of cords remain straight and parallel, then the other family must be straight and
parallel too.

We note that the solutions found in this section are valid for general relations between the
stress and deformation.
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